Computes a confidence interval for one or more parameters in a
unvariateML
object.
Usage
# S3 method for class 'univariateML'
confint(object, parm = NULL, level = 0.95, Nreps = 1000, ...)
Arguments
- object
An object of class
univariateML
.- parm
Vector of strings; the parameters to calculate a confidence interval for. Each parameter must be a member of
names(object)
.- level
The confidence level.
- Nreps
Number of bootstrap iterations. Passed to
bootstrapml()
.- ...
Additional arguments passed to
bootstrapml()
.
Value
A matrix or vector with columns giving lower and upper confidence
limits for each parameter in parm
.
Details
confint.univariateML
is a wrapper for bootstrapml()
that
computes confidence intervals for the main parameters of object
.
The main parameters of object
are the members of
names(object)
. For instance, the main parameters of an object
obtained from mlnorm
are mean
and sd
. The
confidence intervals are parametric bootstrap percentile intervals
with limits (1-level)/2
and 1 - (1-level)
.
See also
stats::confint()
for the generic function and
bootstrapml()
for the function used to calculate the
confidence intervals.
Examples
object <- mlinvgauss(airquality$Wind)
confint(object) # 95% confidence interval for mean and shape
#> 2.5% 97.5%
#> mean 9.282952 10.63857
#> shape 44.413492 71.16450
confint(object, "mean") # 95% confidence interval for the mean parameter
#> 2.5% 97.5%
#> 9.293843 10.585785
# confint(object, "variance") # Fails since 'variance isn't a main parameter.