These are the currently implemented distributions.
Name | univariateML function | Package | Parameters | Support |
---|---|---|---|---|
Cauchy distribution | mlcauchy |
stats |
location ,scale
|
|
Gumbel distribution | mlgumbel |
extraDistr |
mu , sigma
|
|
Laplace distribution | mllaplace |
extraDistr |
mu , sigma
|
|
Logistic distribution | mllogis |
stats |
location ,scale
|
|
Normal distribution | mlnorm |
stats |
mean , sd
|
|
Student t distribution | mlstd |
fGarch |
mean , sd , nu
|
|
Generalized Error distribution | mlged |
fGarch |
mean , sd , nu
|
|
Skew Normal distribution | mlsnorm |
fGarch |
mean , sd , xi
|
|
Skew Student t distribution | mlsstd |
fGarch |
mean , sd , nu ,
xi
|
|
Skew Generalized Error distribution | mlsged |
fGarch |
mean , sd , nu ,
xi
|
|
Beta prime distribution | mlbetapr |
extraDistr |
shape1 , shape2
|
|
Exponential distribution | mlexp |
stats | rate |
|
Gamma distribution | mlgamma |
stats |
shape ,rate
|
|
Inverse gamma distribution | mlinvgamma |
extraDistr |
alpha , beta
|
|
Inverse Gaussian distribution | mlinvgauss |
actuar |
mean , shape
|
|
Inverse Weibull distribution | mlinvweibull |
actuar |
shape , rate
|
|
Log-logistic distribution | mlllogis |
actuar |
shape , rate
|
|
Log-normal distribution | mllnorm |
stats |
meanlog , sdlog
|
|
Lomax distribution | mllomax |
extraDistr |
lambda , kappa
|
|
Rayleigh distribution | mlrayleigh |
extraDistr | sigma |
|
Weibull distribution | mlweibull |
stats |
shape ,scale
|
|
Log-gamma distribution | mllgamma |
actuar |
shapelog , ratelog
|
|
Pareto distribution | mlpareto |
extraDistr |
a , b
|
|
Beta distribution | mlbeta |
stats |
shape1 ,shape2
|
|
Kumaraswamy distribution | mlkumar |
extraDistr |
a , b
|
|
Logit-normal | mllogitnorm |
logitnorm |
mu , sigma
|
|
Uniform distribution | mlunif |
stats |
min , max
|
|
Power distribution | mlpower |
extraDistr |
alpha , beta
|
This package follows a naming convention for the ml***
functions. To access the documentation of the distribution associated
with an ml***
function, write package::d***
.
For instance, to find the documentation for the log-gamma distribution
write
?actuar::dlgamma
Problematic Distributions
Lomax Distribution
The maximum likelihood estimator of the Lomax distribution frequently fails to exist. For assume and . The density is approximately equal to when is small enough. Since , the density converges to an exponential density.