Uses stat::nlm
to estimate the parameters of the Beta distribution.
Arguments
- x
a (non-empty) numeric vector of data values.
- na.rm
logical. Should missing values be removed?
- ...
start
contains optional starting parameter values for the minimization, passed to thestats::nlm
function.type
specifies whether a dedicated"gradient"
,"hessian"
, or"none"
should be passed tostats::nlm
.
Value
mlbeta
returns an object of class
univariateML
. This is a named numeric vector with maximum
likelihood estimates for shape1
and shape2
and the
following attributes:
model
The name of the model.
density
The density associated with the estimates.
logLik
The loglikelihood at the maximum.
support
The support of the density.
n
The number of observations.
call
The call as captured my
match.call
Details
For the density function of the Beta distribution see Beta.
For type
, the option none
is fastest.
References
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, Volume 2, Chapter 25. Wiley, New York.
Examples
AIC(mlbeta(USArrests$Rape / 100))
#> [1] -98.78715