Confidence intervals for alpha and standardized alpha
alphaci.Rd
Calculate confidence intervals for coefficient alpha (Cronbach, 1951)
and standardized alpha (Falk & Savalei, 2011) using asymptotic methods
or the studentized bootstrap. alphaci
constructs confidence intervals
for coefficient alpha and alphaci_std
for standardized alpha.
Usage
alphaci(
x,
type = c("adf", "elliptical", "normal"),
transform = "none",
parallel = FALSE,
conf_level = 0.95,
alternative = c("two.sided", "greater", "less"),
bootstrap = FALSE,
n_reps = 1000
)
alphaci_std(
x,
type = c("adf", "elliptical", "normal"),
transform = "none",
parallel = FALSE,
conf_level = 0.95,
alternative = c("two.sided", "greater", "less"),
bootstrap = FALSE,
n_reps = 1000
)
Arguments
- x
Input data data can be converted to a matrix using
as.matrix
. Rows containing missing values are ignored.- type
Type of confidence interval. Either
adf
,elliptical
, ornormal
.- transform
One of
"none"
,"log"
,"fisher"
, and"arcsin
. Defaults to"none"
.- parallel
If
TRUE
, makes calculations under the assumption of a parallel model. Defaults toFALSE
.- conf_level
Confidence level. Defaults to
0.95
.- alternative
A character string specifying the alternative hypothesis, must be one of
"two.sided"
(default),"greater"
or"less"
.- bootstrap
If
TRUE
, performs a studentized bootstrap withn_reps
repetitions. Defaults toFALSE
.- n_reps
Number of bootstrap samples if
bootstrap = TRUE
. Ignored ifbootstrap = FALSE
. Defaults to1000
.
Value
A vector of class alphaci
containing the confidence end points.
The arguments of the function call are included as attributes.
Details
The methods accept handle missing data using stats::na.omit
, i.e., rows
containing missing data are removed. The bootstrap option uses the
studentized bootstrap (Efron, B. 1987), which is second order correct.
Both functions makes use of future.apply
when bootstrapping.
The type
variables defaults to adf
, asymptotically distribution-free,
which is consistent when the fourth moment is finite
(Maydeu-Olivares et al. 2007). The normal
option assumes normality.
(van Zyl et al. 1999), and is not concistent for models with excess
kurtosis unequal to 0
. The elliptical
option assumes an
elliptical or pseudo-elliptical distribution of the data. The resulting
confidence intervals are corrected variants of the normal theory
intervals with a kurtosis correction (Yuan & Bentler 2002). The
common kurtosis parameter is calculated using the unbiased sample
kurtosis (Joanes, 1998). All these methods have analogues for
standardized alpha, which can be derived using the methods of Hayashi &
Kamata (2005) and Neudecker (2006).
References
Falk, C. F., & Savalei, V. (2011). The relationship between unstandardized and standardized alpha, true reliability, and the underlying measurement model. Journal of Personality Assessment, 93(5), 445-453. https://doi.org/10.1080/00223891.2011.594129
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334. https://doi.org/10.1007/BF02310555#'
Efron, B. (1987). Better Bootstrap Confidence Intervals. Journal of the American Statistical Association, 82(397), 171-185. https://doi.org/10.2307/2289144
Maydeu-Olivares, A., Coffman, D. L., & Hartmann, W. M. (2007). Asymptotically distribution-free (ADF) interval estimation of coefficient alpha. Psychological Methods, 12(2), 157-176. https://doi.org/10.1037/1082-989X.12.2.157
van Zyl, J. M., Neudecker, H., & Nel, D. G. (2000). On the distribution of the maximum likelihood estimator of Cronbach's alpha. Psychometrika, 65(3), 271-280. https://doi.org/10.1007/BF02296146
Yuan, K.-H., & Bentler, P. M. (2002). On robustness of the normal-theory based asymptotic distributions of three reliability coefficient estimates. Psychometrika, 67(2), 251-259. https://doi.org/10.1007/BF02294845
Joanes, D. N., & Gill, C. A. (1998). Comparing measures of sample skewness and kurtosis. Journal of the Royal Statistical Society: Series D (The Statistician), 47(1), 183-189. https://doi.org/10.1111/1467-9884.00122
Hayashi, K., & Kamata, A. (2005). A note on the estimator of the alpha coefficient for standardized variables under normality. Psychometrika, 70(3), 579-586. https://doi.org/10.1007/s11336-001-0888-1
Neudecker, H. (2006). On the Asymptotic Distribution of the Natural Estimator of Cronbach's Alpha with Standardised Variates under Nonnormality, Ellipticity and Normality. In P. Brown, S. Liu, & D. Sharma (Eds.), Contributions to Probability and Statistics: Applications and Challenges (pp. 167-171). World Scientific. https://doi.org/10.1142/9789812772466_0013
Examples
library("alphaci")
library("psychTools")
x <- bfi[, 1:5]
x[, 1] <- 7 - x[, 1] # Reverse-coded item.
alphaci(x)
#> Call: alphaci(x = x)
#>
#> 95% confidence interval (n = 2709).
#> 0.025 0.975
#> 0.6828923 0.7246195
#>
#> Sample estimates.
#> alpha sd
#> 0.7037559 0.5536964
alphaci_std(x)
#> Call: alphaci_std(x = x)
#>
#> 95% confidence interval (n = 2709).
#> 0.025 0.975
#> 0.6938373 0.7331658
#>
#> Sample estimates.
#> alpha sd
#> 0.7135016 0.5218675
# Calculate confidence intervals with other options.
library("lavaan")
#> This is lavaan 0.6-19
#> lavaan is FREE software! Please report any bugs.
x <- lavaan::HolzingerSwineford1939[1:20, 7:9]
results <- c(
alphaci(x, type = "adf", parallel = FALSE),
alphaci(x, type = "adf", parallel = TRUE),
alphaci(x, type = "elliptical", parallel = FALSE),
alphaci(x, type = "elliptical", parallel = TRUE),
alphaci(x, type = "normal", parallel = FALSE),
alphaci(x, type = "normal", parallel = TRUE)
)